Solution Bank

Exercise 7C

1 a Area of shaded sector

$$= \frac{1}{2} \times 8^2 \times 0.6 = 19.2 \, \text{cm}^2$$

b Area of shaded sector

$$=\frac{1}{2}\times9^2\times\frac{\pi}{6}=\frac{27\pi}{4}=6.75\pi\,\text{cm}^2$$

c Angle subtended at *C* by major arc

$$=2\pi-\frac{\pi}{5}=\frac{9\pi}{5}$$

Area of shaded sector

$$= \frac{1}{2} \times 1.2^{2} \times \frac{9\pi}{5} = \frac{162\pi}{125} = 1.296\pi \,\text{cm}^{2}$$

d Area of shaded segment

$$= \frac{1}{2} \times 10^2 (1.5 - \sin 1.5) = 25.1 \,\mathrm{cm}^2$$

e Area of shaded segment

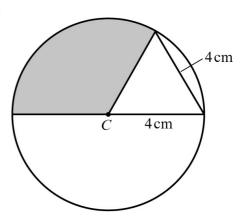
$$=\frac{1}{2}\times6^2\left(\frac{\pi}{3}-\sin\frac{\pi}{3}\right)$$

$$=(6\pi - 9\sqrt{3}) \text{ cm}^2 = 3.26 \text{ cm}^2$$

f Area of shaded segment

$$= \pi \times 6^{2} - \left(\frac{1}{2} \times 6^{2} \left(\frac{\pi}{4} - \sin \frac{\pi}{4}\right)\right)$$
$$= 36\pi - \frac{36\pi}{8} + \frac{36}{2} \times \frac{\sqrt{2}}{2}$$
$$= \left(\frac{63\pi}{2} + 9\sqrt{2}\right) \text{cm}^{2} = 111.7 \text{ cm}^{2}$$

2 a



The triangle is equilateral, so the angle at C in the triangle is $\frac{\pi}{3}$.

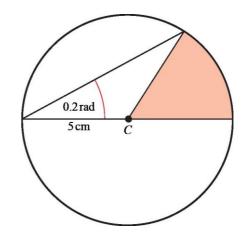
Angle subtended at C by shaded sector

$$=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$$

Area of shaded sector

$$=\frac{1}{2}\times4^{2}\times\frac{2\pi}{3}=\frac{16}{3}\pi\,cm^{2}$$

b



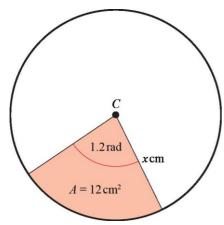
The triangle is isosceles, so the angle at *C* in the shaded sector is 0.4 rad.

Area of shaded sector

$$= \frac{1}{2} \times 5^2 \times 0.4 = 5 \,\mathrm{cm}^2$$

Pure Mathematics 1

3 a



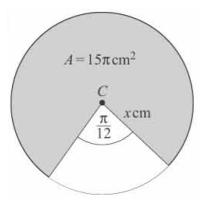
Area of shaded sector

$$= \frac{1}{2} \times x^2 \times 1.2 = 0.6x^2$$

So
$$0.6x^2 = 12$$

 $x^2 = 20$

b



x = 4.47 (3 s.f.)

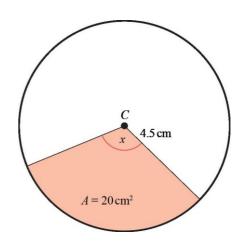
Area of shaded sector

$$= \frac{1}{2} \times x^{2} \times \left(2\pi - \frac{\pi}{12}\right) = \frac{1}{2}x^{2} \times \frac{23\pi}{12}$$
So $15\pi = \frac{23}{24}\pi x^{2}$

$$x^{2} = \frac{24 \times 15}{23}$$

$$x = 3.96 (3 \text{ s.f.})$$

c

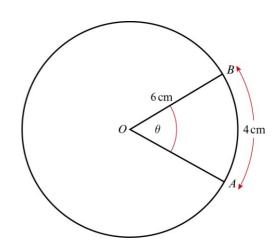


Area of shaded sector

$$= \frac{1}{2} \times 4.5^{2} \times x$$
So $2 = \frac{1}{2} \times 4.5^{2} x$

$$x = \frac{40}{45^{2}} = 1.98 \text{ (3 s.f.)}$$

4



Using $l = r\theta$:

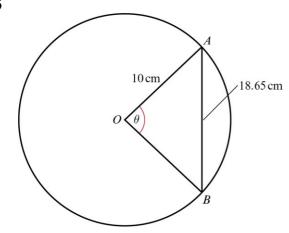
$$4 = 6\theta$$

$$\theta = \frac{2}{3}$$

So area of sector $=\frac{1}{2} \times 6^2 \times \frac{2}{3} = 12 \text{ cm}^2$

Solution Bank

5



$$\mathbf{a} \quad \cos \theta = \frac{10^2 + 10^2 - 18.65^2}{2 \times 10 \times 10}$$
$$= -0.739 \text{ (3 s.f.)}$$

b
$$\cos \theta = -0.739... \Rightarrow \theta = 2.4025...$$

Area = $\frac{1}{2} \times 10^2 \times 2.4025...$
= $120 \text{ cm}^2 \text{ (3 s.f.)}$

6 Using area of sector $=\frac{1}{2}r^2\theta$:

$$100 = \frac{1}{2} \times 12^2 \theta$$

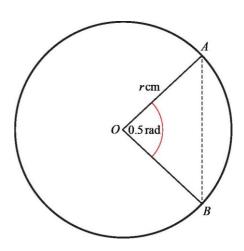
$$\Rightarrow \theta = \frac{100}{72} = \frac{25}{18} \text{ rad}$$

The perimeter of the sector

$$= 12 + 12 + 12\theta = 12(2 + \theta)$$

$$= 12 \times \frac{61}{18} = \frac{122}{3} = 40 \frac{2}{3} \text{ cm}$$

7



a The perimeter of minor sector AOB= r + r + 0.5r = 2.5r

So
$$30 = 2.5r$$

$$\Rightarrow r = \frac{30}{2.5} = 12$$

b Area of minor sector $AOB = \frac{1}{2}r^2\theta$ = $\frac{1}{2} \times 12^2 \times 0.5 = 36 \text{ cm}^2$

c Area of segment

$$= \frac{1}{2}r^{2}(\theta - \sin \theta)$$

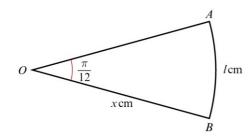
$$= \frac{1}{2} \times 12^{2}(0.5 - \sin 0.5)$$

$$= 72(0.5 - \sin 0.5)$$

$$= 1.48 \text{ cm}^{2}(3 \text{ s.f.})$$

Solution Bank

8



a
$$l = r\theta \Rightarrow l = x \times \frac{\pi}{12} \Rightarrow x = \frac{12l}{\pi}$$

Area of sector $= \frac{1}{2}r^2\theta$
 $= \frac{1}{2} \times \left(\frac{12l}{\pi}\right)^2 \times \frac{\pi}{12}$
 $= \frac{1}{2} \times \frac{12l^2}{\pi}$
 $= \frac{6l^2}{\pi}$

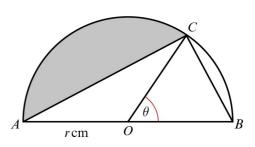
b
$$\frac{6l^2}{\pi} \times 24 = 3600\pi$$

$$l^2 = 25\pi^2$$

$$l = 5\pi$$
The arc length of AB is 5π cm.

$$\mathbf{c} \quad x = \frac{12l}{\pi} = \frac{12}{\pi} \times 5\pi = 60$$

9



Using the formula,

area of a triangle = $\frac{1}{2}ab \sin C$:

area of triangle
$$COB = \frac{1}{2}r^2 \sin \theta$$
 (1)

 $\angle AOC = \pi - \theta$, so area of shaded segment

$$=\frac{1}{2}r^2\left((\pi-\theta)-\sin(\pi-\theta)\right) \quad (2)$$

As (1) and (2) are equal:

$$\frac{1}{2}r^{2}\sin\theta = \frac{1}{2}r^{2}(\pi - \theta - \sin(\pi - \theta))$$

$$\sin\theta = \pi - \theta - \sin(\pi - \theta)$$

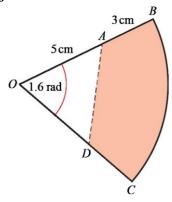
But
$$\sin(\pi - \theta) = \sin \theta$$
,

so
$$\sin \theta = \pi - \theta - \sin \theta$$

Hence
$$\theta + 2\sin\theta = \pi$$

Pure Mathematics 1

10



Area of sector $OBC = \frac{1}{2}r^2\theta$ with r = 8 cm and $\theta = 1.6$ rad

So area of sector *OBC*

$$= \frac{1}{2} \times 8^2 \times 1.6 = 51.2 \,\mathrm{cm}^2$$

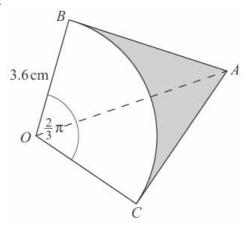
Using area of triangle formula: area of triangle *OAD*

$$= \frac{1}{2} \times 5 \times 5 \times \sin 1.6 = 12.49... \text{ cm}^2$$

So area of shaded region

$$= 51.2 - 12.49... = 38.7 \text{ cm}^2 \text{ (3 s.f.)}$$

11



In right-angled triangle *OBA*:

$$\tan\frac{\pi}{3} = \frac{AB}{3.6} \Rightarrow AB = 3.6 \times \tan\frac{\pi}{3}$$

So area of triangle OBA

$$= \frac{1}{2} \times 3.6 \times 3.6 \times \tan \frac{\pi}{3}$$

and area of quadrilateral OBAC

$$=3.6^2 \times \tan \frac{\pi}{3} = 22.447... \text{ cm}^2$$

Area of sector

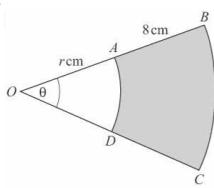
$$= \frac{1}{2} \times 3.6^2 \times \frac{2}{3} \pi = 13.57... \text{ cm}^2$$

So area of shaded region

$$= 22.447... - 13.57... = 8.88 \,\mathrm{cm}^2 \,(3 \,\mathrm{s.f.})$$

Pure Mathematics 1

12



a Area of sector $OBC = \frac{1}{2}(r+8)^2 \theta \text{ cm}^2$ Area of sector $OAD = \frac{1}{2}r^2\theta \text{ cm}^2$

So area of shaded region ABCD
=
$$\left(\frac{1}{2}(r+8)^2\theta - \frac{1}{2}r^2\theta\right)$$
cm² = 48 cm²

$$\theta((r^2 + 16r + 64) - r^2) = 96$$

$$\theta(16r + 64) = 96$$

$$\theta(r + 4) = 6$$

$$r\theta + 4\theta = 6$$

$$r\theta = 6 - 4\theta$$

$$r = \frac{6}{\theta} - 4$$

b Substituting $r = 10\theta$ in equation (1): $6 = 10\theta^2 + 4\theta$

Rearranging:

$$5\theta^{2} + 2\theta - 3 = 0$$

 $(5\theta - 3)(\theta + 1) = 0$
So $\theta = \frac{3}{5}$ and $r = 10 \times \frac{3}{5} = 6$

Perimeter of shaded region = $(r\theta + 8 + (r + 8)\theta + 8)$ cm = $\frac{18}{5} + 8 + \frac{42}{5} + 8 = 28$ cm

13 Area of sector =
$$A \text{ cm}^2 = \frac{1}{2} \times 28^2 \times \theta$$

Perimeter of sector = $P \text{ cm}$
= $r\theta + 2r = (28\theta + 56) \text{ cm}$

As
$$A = 4P$$
:

$$392\theta = 4(28\theta + 56)$$

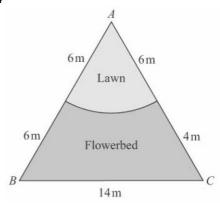
$$98\theta = 28\theta + 56$$

$$70\theta = 56$$

$$\theta = \frac{56}{70} = 0.8$$

So
$$P = 28\theta + 56 = 28 \times 0.8 + 56 = 78.4$$

14



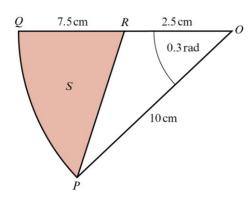
a Using the cosine rule:

$$\cos BAC = \frac{10^2 + 12^2 - 14^2}{2 \times 10 \times 12} = 0.2$$

$$\angle BAC = \cos^{-1} 0.2$$
= 1.369... = 1.37 rad (3 s.f.)

b Area of triangle *ABC* = $\frac{1}{2} \times 12 \times 10 \times \sin A = 58.787... \text{ m}^2$ Area of sector (lawn) = $\frac{1}{2} \times 6^2 \times A = 24.649... \text{ m}^2$ So area of flowerbed = $58.787... - 24.649... = 34.1 \text{ m}^2$ (3 s.f.)

15



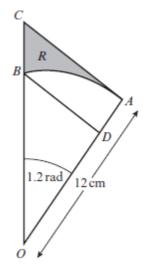
a
$$RP^2 = 2.5^2 + 10^2 - 2 \times 10 \times 2.5 \times \cos 0.3$$

= 58.48...
 $RP = 7.65 \text{ cm}$
 $QP = 10 \times 0.3 = 3 \text{ cm}$
So perimeter of S
= 3 + 7.5 + 7.65 = 18.1 cm (3 s.f.)

b Area of S
=
$$\frac{1}{2} \times 10^2 \times 0.3 - \frac{1}{2} \times 2.5 \times 10 \times \sin 0.3$$

= 11.3 cm^2 (3 s.f.)

16 a



$$AC = 12 \times \tan 1.2 = 30.865... \text{ cm}$$

Area of triangle AOC
 $= \frac{1}{2} \times 12 \times 30.865... = 185.194... \text{ cm}^2$
So area of R
 $= 185.194... - \frac{1}{2} \times 12^2 \times 1.2 = 98.794...$
 $= 98.79 \text{ cm}^2 \text{ (2 d.p.)}$

b Length of arc
$$AB = 12 \times 1.2 = 14.4$$
 cm
 $OD = 12 \times \cos 1.2 = 4.348...$ cm
 $BD = 12 \times \sin 1.2 = 11.184...$ cm
 $AD = 12 - 4.348... = 7.651...$ cm
Perimeter of DAB
 $= AB + AD + BD$
 $= 14.4 + 7.651... + 11.184... = 33.236...$
 $= 33.24$ cm (2 d.p.)

$$BE = 5 \times \sin 0.6 = 2.823...$$

so $\sin BCE = \frac{2.823...}{12}$
hence $\angle BCE = 0.237...$
and $\angle BCD = 0.474...$

Shaded area to left of BD

 $= \frac{1}{2} \times 12^2 \times (0.474... - \sin 0.474...)$ = 1.271...

Shaded area to right of *BD* = $\frac{1}{2} \times 5^2 \times (1.2 - \sin 1.2)$ = 3.349...

So total shaded area $= 1.271... + 3.349... = 4.62 \text{ cm}^2 \text{ (3 s.f.)}$

Challenge

Arc length $l = r\theta \Rightarrow \theta = \frac{l}{r}$ So area $= \frac{1}{2}r^2\theta = \frac{1}{2}r^2\left(\frac{l}{r}\right) = \frac{1}{2}rl$